اجرای دسته ای و گروهی کدهای cplex

 

مدتی است دوستان علاقه‌مند به وب‌سایت ortimes درخواست‌های مکرری جهت ارائه سازوکار مشخص و باثباتی جهت حل دسته‌ای (گروهی) مسائل در نرم‌افزار cplex به همراه چندین دیتاست مختلف داشته‌اند.

توجه !
روی سخن ما کاربرانی که از conert technology بهره می‌برند، نیست. طبیعتاً راه‌های ساده‌تری برای انجام این مهم با استفاده از این فناوری وجود دارد.

برای کاربرانی که از محیط IBM ILog CPLEX Optimization Studio استفاده می‌کنند یک راه‌حل موقتی در همین وب‌سایت ارائه گردید:

فایل اکسل اجرای کد CPLEX در تکرارهای مختلف

در این پست قصد داریم راه‌حل کاراتر دیگری را ارائه دهیم.

بیشتر بخوانید

شمارش تعداد جواب‌های مربع جادویی در CP Optimizer

 

 

مسایل برنامه‌ریزی عدد صحیح اغلب دارای جواب‌های بهینه یا شدنی چندگانه هستند و برای طراحی الگوریتم‌های کارا این جواب‌های چندگانه و ساختارهای موازی شناسایی می‌شوند. در این پست قصد داریم تعداد جواب‌های شدنی مساله‌ی مربع جادویی magic square را نه به کمک روش‌های تحلیلی بلکه به کمک نرم‌افزار CPLEX و توابع جستجوی موجود در آن، شمارش کنیم.

بیشتر بخوانید

فراخوانی ماتریس سه بعدی از اکسل در CPLEX

اخیرا سوالات و مشکلات زیادی در خصوص نحوه‌ی تعامل نرم‌افزار CPLEX با نرم‌افزار اکسل دریافت نموده‌ایم. در این پست قصد داریم نحوه‌ی ارتباط اساسی این دو نرم‌افزار و نحوه‌ی ورود و فراخوانی پارامترهای سه بعدی از نرم‌افزار اکسل را تشریح کنیم.

بیشتر بخوانید

محدودیت های تنبل در CPLEX


بسته به شرایط فضای شدنی و تابع هدف، محدودیت‌ها عملکردهای متفاوتی از خود نشان می‌دهند: محدودیت‌های کارکردی، غیرکارکردی، الزام‌آور، غیرالزام‌آور، فعال، زائد و غیره. محدودیت‌های دیگری نیز در این فضا قابل ارائه است که برخی از خواص محدودیت‌های سنتی را دارا هستند: هم الزام‌آور و هم غیرالزام‌آور. جای تعجب نیست که چنین محدودیت‌هایی در علم بهینه‌سازی محاسباتی نقش‌آفرینی می‌کنند. یک دسته از این محدودیت‌ها به محدودیت‌های تنبل lazy constraints مشهور هستند. در این پست قصد داریم این دسته محدودیت‌ها را معرفی و با ویژگی‌ها و کارکردهای آن در نرم‌افزار CPLEX آشنا شویم.

بیشتر بخوانید

نحوه ایجاد متغیر تصمیم چند بعدی در پلتفرم ++C با رابط Concert Technology

در این پست قصد داریم نحوه ایجاد یک دسته متغیر تصمیم سه بعدی را بررسی نماییم. در زبان OPL یک متغیر سه بعدی باینری به صورت زیر تعریف می‌شود:

i in 1..sizeSet1;
j in 1..sizeSet2;
k in 1..sizeSet3;
dvar Boolean x[i][j][k];

در زبان ++C از عبارت <>IloArray می‌توان جهت ایجاد لیستی از متغیرها (یک بردار متغیر تصمیم) و بدین ترتیب ماتریس‌های متغیر چند بعدی بهره گرفت. به عنوان مثال یک دسته متغیر تصمیم سه بعدی به صورت رویه‌ای که در ادامه آمده است، تعریف می‌شود. ابتدا لیست‌های مورد نظر تعریف می‌شود.

بیشتر بخوانید

نحوه شناسایی تک کالبدی بودن ضرایب فنی

به ماتریس مربعی که دارای عناصر عدد صحیح ۰ یا ۱- یا ۱+ و دترمینان ۱- یا ۱ باشه، ماتریس تک کالبدی (unimodular matrix) گفته می‌شود. از طرفی، ماتریس کاملا تک کالبدی (totally unimodular) ماتریسی است که تمامی زیرماتریس‌های مربعی آن معکوس‌پذیر و تک کالبدی باشند. به عبارتی در صورتی که یک ماتریس ۸×۸ داشته باشیم، بایستی ۲۰۴ زیرماتریس آن را به لحاظ تک کالبدی بودن بررسی نماییم.
مزیت عمده این خاصیت این است که در برنامه ریزی تمام عدد صحیح، در صورتی که ماتریس ضرایب فنی دارای خاصیت کاملا تک‌کالبدی باشند، در اینصورت جواب‌های رهاشده خطی مساله عدد صحیح، همان جواب‌های مساله اصلی خواهند بود (تمامی متغیرها مقادیر صحیح می گیرند). به بیان دگر، پوسته محدب تمامی نقاط گوشه‌ای آن صحیح خواهند بود. برای بررسی کاملا تک‌کالبدی بودن یک برنامه‌ریزی عدد صحیح کافی است ماتریس ضرایب فنی آن را استخراج و تحلیل کرد.

بیشتر بخوانید

آشنایی با برنامه ریزی مخروطی درجه دوم

رده خاصی از مسائل غیرخطی، جز دسته مسائل برنامه ریزی مخروطی درجه دوم (second order conic programs) قرار می‌گیرند که در زمینه‌های متعدد علوم کنترل، سرمایه‌گذاری، علوم مهندسی و پزشکی و عیره کاربرد دارند. امروزه با پیشرفت علوم رایانشی، این دسته مسایل با استفاده از الگوریتم‌های تخصصی نقطه درونی (interior point) که در اکثر نرم‌افزارهای تجاری توسعه داده شده‌اند قابل حل هستند.

 

بیشتر بخوانید

سه راهکار عمده جهت رفع خطای کمبود حافظه در نرم افزار CPLEX

در پست قبلی اشاره شد که چه عواملی منجر به ایجاد خطای کمبود حافظه (out of memory) در نرم افزار IBM Ilog CPLEX می‌شود. در این پست سه راهکار عمده جهت برطرف‌سازی این خطا را بررسی می کنیم. اولین و ساده‌ترین راهکار ممکن تغییر پارامتر thread به مقدار ۱ است. برای این منظور کافی است که یک بلوک پیش‌پردازنده‌ی execute به صورت زیر در ابتدای کد قرار داده شود.

execute {
 cplex.threads = 1;
}

با انجام این عمل، پردازش از حالت موازی خارج شده و جستجو به صورت تک نخی (single threading) صورت می‌گیرد. در این حالت به حجم حوضچه‌ی جواب (solution pool) کمتری نیاز خواهد بود.

راهکار بعدی اجازه دسترسی به مقدار بیشتری از حافظه موقت (RAM) هست. در حالت عادی نرم افزار تنها اجازه‌ی دسترسی به ۲ گیگابایت از فضای موقت را دارد.

execute {
 cplex.workmem = 4000;
}

راهکار سوم تغییر پارامتر‌های الگوریتم حل است که اغلب با سعی و خطا همراه می‌شود. به عنوان مثال تغییر پارامتر lpmethod از مقدار یک به دو، نوع الگوریتم حل را از سیمپلکس عادی به الگوریتم سیمپلکس-دوال تغییر می دهد. در عمل ثابت شده است که الگوریتم‌های سیمپلکس-دوال نسبت به سایر الگوریتم‌های برنامه‌ریزی خطی، در حین اجرا فضای کمتری را اشغال می‌کنند.

execute {
 cplex.lpmethod = 1;
}

خطای کمبود حافظه در CPLEX چه زمانی رخ می دهد؟

یکی از پارامترهای مهم مدیریت کدهای توسعه داده‌شده در نرم‌افزار CPLEX، مدیریت حافظه آنها است. یکی از خطاهای عمده که معمولا در مدل‌های با مقیاس بالا ممکن است رخ می‌دهد، خطای حافظه‌ی خارج از دسترسی (out of memory) است.

دلیل اصلی بروز این مشکل عدم توانایی نرم‌افزار در کنترل انباشت اطلاعات در تکرارهای مختلف است و در نهایت رشد نمایی داده‌ها دامن زده می‌شود. رشد نمایی داده‌ها اغلب در مدل‌های برنامه‌ریزی عدد صحیح مورد توجه می‌باشد؛ بدین ترتیب مدیریت شاخه‌های بسته نشده (unfathomed) نقش بسیار موثری در کاهش حافظه موقت ایفا خواهند کرد.

از طرفی زبان های سطح بالا مانند سی شارپ و جاوا به طور خودکار از قابلیت مدیریت حافظه پشتیبانی می‌کنند. به عبارتی اگر متغیر محلی برای ادامه‌ی برنامه مفید نباشد، مفسر بار مدیریت حافظه رو به دوش کشیده و با استفاده از خاصیت garbage collecting متغیرهای غیرضروری را جهت آزادسازی فضای حافظه‌ی موقت (RAM) حذف می‌نماید. در نرم افزار IBM Ilog CPLEX نیز روندی مشابه را شاهد هستیم. بخش profiler در این نرم‌افزار، مسئول نظارت بر مدیریت صحیح حافظه می‌باشد.

اغلب مواقع راه حل اصلی این است که بخشی از مدل یا داده‌های مدل سازمان‌دهی مجدد (restructure) شوند؛ به‌عبارتی جهت فشرده‌سازی داده‌ها و بهره‌برداری موثر از حافظه، توصیه می‌شود از ساختارهای داده (data structure) یا مجموعه های مرتب (tuple) بهره گرفته شود.